Sensitivity of Pine Island Glacier to observed ocean forcing: PIG response to ocean forcing

Abstract

We present subannual observations (2009–2014) of a major West Antarctic glacier (Pine Island Glacier) and the neighboring ocean. Ongoing glacier retreat and accelerated ice flow were likely triggered a few decades ago by increased ocean-induced thinning, which may have initiated marine ice sheet instability. Following a subsequent 60% drop in ocean heat content from early 2012 to late 2013, ice flow slowed, but by { extless} 4%, with flow recovering as the ocean warmed to prior temperatures. During this cold-ocean period, the evolving glacier-bed/ice shelf system was also in a geometry favorable to stabilization. However, despite a minor, temporary decrease in ice discharge, the basin-wide thinning signal did not change. Thus, as predicted by theory, once marine ice sheet instability is underway, a single transient high-amplitude ocean cooling has only a relatively minor effect on ice flow. The long-term effects of ocean temperature variability on ice flow, however, are not yet known.

Publication
Geophysical Research Letters
Date
10.1002/2016GL070500